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1. Introduction. In recent papers, P. B. Bailey [2] and M. Godart [5] have used 
the Priifer transformation to calculate the eigenvalues of nonsingular and some 
singular Sturm-Liouville boundary value problems. This method has the advantage 
over usual initial-value and algebraic methods (see e.g. [3], [4] and others) since the 
nth eigenvalue is obtained directly by prescribing n. The use of the Priifer transfor- 
mation for the computation of eigenvalues of nonsingular problems was also sug- 
gested by Kamke ([6, pp. 269-270]). A similar method was used by Milne [8]. 

In the present article, we establish the existence of a general class of singular 
problems which may be solved in a straightforward manner using the Priifer trans- 
formation. For simplicity, in Section 2, we describe the method for nonsingular 
Sturm-Liouville problems. In Section 3, we show that this method is applicable to 
a large class of singular problems. Some examples are given in Section 4. In Section 
5, we extend the class of singular problems to which this method is applicable by 
introducing a modified transformation. 

2. Computation of Eigenvalues for Nonsingular Problems. We consider the 
problem of computing the eigenvalues for boundary-value problems associated with 
the Sturm-Liouville equation 

(1) (p(x)u')' + [Xp(x) - q(x)]u = 0, x E (a, b) 

where the interval [a, b] is finite. On the closed interval [a, b], we take p, p', p and q 
to be real and continuous where p and p are positive. For this nonsingular problem, 
we consider boundary conditions of the form 

(2) u(a) cos A - p(a)u'(a) sin A = 0, 

(3) u(b) cos B - p(b)u'(b) sin B = 0. 

Applying the Priifer transformation, we introduce the new variables r(x) and 
0(x) defined by 

(4) u(x) = r(x) sin 0(x) , p(x)u'(x) = r(x) cos 0(x) 
Under this transformation, we obtain the equation 

(5) 0' = (1/p(x)) cos2 0 + [Xp(x)-q(x)] sin 0 

with boundary conditions 

(6) 0(a) = A, 

(7) 0(b) = B + nr, 
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where - 7r/2 < A < r/2, - r/2 < B < 7r/2, and n is a nonnegative integer. 
To find the nth eigenvalue of (1), (2), (3), we proceed as follows. For a given 

value of X, we integrate (5) from a to (a + b)/2 using (6) as an initial condition to 
produce the solution 0a(x, X) for x E [a, (a + b)/2]. For this same value of X we inte- 
grate from b back to (a + b)/2 using (7) with a particular choice of n as an initial 
condition to produce the solution Ob(x, X) for x E [(a + b)/2, b]. When X equals the 
nth eigenvalue X. 

(8) E(Xn) = Oa((a + b)/2, Xn) - Ob((a + b)/2, Xn) = 0. 

The determination of the nth eigenvalue is thus equivalent to solving the transcen- 
dental equation (8). Although Godart [5] has suggested this procedure in the case of 
problems which are singular at both a and b, it is advantageous to always integrate 
from both a and b since the accumulation of rounding errors will be reduced. 

Equation (8) can be solved by iteration. In [5], Godart applies the Newton- 
Raphson approximation method. That is, for an initial value Xn(?) successive esti- 
mates of X. are given by 

(9) Xn(k+1) = Xn(k) - E(Xn(k))/E'(Xn(k)) 

where E'(X) is obtained as follows. Defining 

(10) x(x, X) = O0(x, X)/OX, 

differentiation of (5) yields 

(11) x' = p sin2 0 + x[Xp-q-1/p] sin 20. 

From (6) and (7), we obtain the conditions 

(12) x(a, X) = ?; x(b, X) = 0. 

Thus for each iterative step in addition to solving (5) to obtain E, we must also 
solve (11) to obtain E'. 

3. Computation of Eigenvalues of Singular Problems. If (1) has regular singular 
points at x = a or x = b, it would appear that a different technique of integration is 
required. We shall show, however, that for a wide class of such singular problems, 
this is not the case. As pointed out by Bailey [2], the asymptotic behavior of the 
solutions of (1) usually serves to determine the boundary condition for 0 at the 
singular points. By studying this asymptotic behavior, we determine a class of 
singular points for which the method described in Section 2 can be applied directly. 

We start by considering the normal form 

(13) u" + pl(x)u' + p2(x)u = 0, x E (0, c), 

which we take to have a regular singular point at x = 0 where 

pi(x) = a/x + S(x) 

and 

P2(X) = Q(X)/X2 

with S and Q analytic. We put (13) in self-ad joint form by multiplying by exp f p dx 
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= xaP(x) where P(x) = exp fix S dt. We obtain 

(14) (xaP (x) u')' + xa 2P(x)Q(x)u = 0 

and note that P(x) > 0 for x > 0 and Q(x) = xYR(x) where R(0) 0 0 and -y ? 0. 
The Prufer transformation (4) applied to (14) yields 

(15) 0' = x+'Y2P(x)R(x) sin2 0 + [xaP(x)]-I cos2 0. 

To apply the method of Section 2, it is necessary that 0' have a finite value at x = 0. 
Using (4) we may write (15) in the form 

(16) r2(x)0' = x+y-2PRu2 + XoPu/2 

where 

(17) r2(x) = u2 + x2aP2u'2 

For 0' to be finite at x = 0, solutions of (13) must be of the form u(x) = xOU(x) 
where U(O) # 0 and U is analytic. It will be convenient to consider two cases. 

Case I. : > 0. Then u'(x) = xO-'V(x) where V(x) = AU + xU'(x) is analytic 
and V(O) 5 0. From (16) we then obtain 

(18) of = ~~X'PRU2 + PV2 (18) 0 = x2-au2 + xap2V2 

The numerator of (18) is not zero at x = 0. The denominator of (18) vanishes for 
x = 0 if 0 < a < 2. Consequently, 0' is not bounded near x = 0 for this range of 
values of a. However, for all other values of a, 0' is well defined. One notes that this 
behavior is independent of the value of -y, the order of the zero of Q(x) at x = 0. 

Case II. A = 0. In this case r(x) does not vanish and remains finite if a > 0. Thus 
for a > 0 we need only consider the behavior of the first term on the right side of 
(16). Since PRu2 # 0, this term is finite if and only if 

(19) y > 2-ca. 

Consequently, if the order of the zero of Q((x) is not less than 2 - a, 0' is finite. 
To complete the discussion of this case, we must consider negative values of a. 

It follows in a similar manner that 0' is finite when (19) holds and u'(0) = 0. When 
u'(0) 0 0 it is required that 

(20) y _ 2 + a. 

Our results are summarized in the following: 
THEOREM 1. If there is a solution of the form u(x) = x'U(x) (U(O) : 0, f > 0) of 

the equation 

(14) (xaP(x) u')' + xa-2pP(x)Q(x)u = 0 

where P(x) > 0 and Q(x) = xYR(x) (R(0) 5 0), then 0' is finite in a neighborhood of 
x = 0 provided that one of the following conditions holds: 

(i): > 0andcx < 0o cx a 2, 
(ii) : = 0, a > 0 and y > 2 -c, 

(iii) A = 0, a < 0, u'(O) = Oandy > 2 -c, 

(iv)A = 0, < O, u'(0) 0 and y > 2 +- . 
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We remark that if 6' is computable at a singular point under the conditions of 
this theorem then x' of (11) will also be computable. This may be seen by noting 
that 

r2 sin 20 = r22 sin 0 cos 0 = 2 puu'. 

We note that our theorem does not apply to Bessel's equation of order v > 0, 

(XU')' + [XX - p2/X]U = 0, 

since a = I anid A > 0. In [2], Bailey solves Bessel's equation with v = 1/4 using the 
Pruifer transformation. A modification of the analysis used in proving the above 
theorem shows that the method can be applied to (14) whenever a = 1 and A > 0. 
To see this we again consider a solution of the form u(x) = xAU(x). This implies that 
-y = 0 and: = (-R(0))" 2. From (16) and the fact that V(x) = 3U + xU'(x), we 
obtain 

[U2 + x2P2V2]0'-= x-P(x)[R(x) + f2]U2 + 213P(x)UU' + xP(x)U'2. 

But 32 = -R(0), consequently the first term on the right is finite and 6' is computa- 
ble in a neighborhood of the origin. 

4. Some Examples. Before presenting examples of the use of the above theorem, 
we shall briefly describe the procedure used for the numerical solution of each of the 
example problems. The differential equations were first written as a system of first- 
order equations. The classic Runge-Kutta fourth-order method (see Collatz [3]) 
was used to obtain starting values. The remainder of the computation was carried 
out using a predictor-corrector method obtained from the Adams extrapolation and 
interpolation methods described by Collatz [3] by retaining differences through the 
third order. The corrector was applied once per computational step, an estimate of 
the local truncation error was made at each step to ensure that this error did not 
exceed a predetermined tolerance. 

In [4], Fox considers the problem of an oscillating elliptically shaped narrow 
lake. This leads to the solution of the boundary value problem 

(21) U" + xu' /(1 -x2) + XU = , x (-1,1) 

u(?1) = 0. 

For this problem we have a = -1/2, 3 = 3/2 and, consequently, it falls under case 
(i) of the above theorem. The following table gives computed values for Xi, i - 
1, 2, 3 of (21) for three step sizes h in the integration scheme. 

TABLE I 

h 1 X2 i 3 

0.020 3.5605 8 12.1619 25.6795 

0.010 3.5597 4 12.1583 25.7090 

0.005 3.5594 4 12.1570 25.7051 
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The values of '1 in the table compare favorably with the value v = (0.04)X1 = 

0.1423 given by Fox. 
Bessel's equation of order zero has a = 1, X = 0 and is an example of case (ii). 

We have 

(22) (xu')' + Xxu = 0, u(O) finite, u(1) = 0. 

The results of the computation are summarized in Table II. 

TABLE II 

h Xi X2 X3 

0.0100 5.7831 8 30.4713 74.8598 

0.0050 5.7831 8 30.4712 74.8873 

0.0025 5.7831 8 30.4712 74.8867 

Exact Xi 5.7831 86 30.4712 6 74.8870 1 

Bailey [2] considers the equation 

(23) ((1 - x2)u')' + [XX2 - (5x + 22.55316)]u = 0, x C (-1, 1), 

associated with the study of the energy levels of the hydrogen-helium molecular 
ion. Both singular points of this example fall under case (ii). Thus we may integrate 
(5) from both ends and avoid the computational difficulties of integrating into a 
singular point. Godart [5] did this to find eigenvalues of Legendre's equation. Using 
this method with an integration step of 0.005, we obtained Xi = 27.50301, which 
agrees favorably with previous results. 

As would be expected, the convergence of the Newton-Raphson iteration depends 
on the initial guess oAn(?). It is possible to obtain estimates of 'X using asymptotic 
formulae or other methods as given in [1], [3], and [7]. In particular, we note that 
the initial choice of Xi for equation (23) is especially critical. 

Finally, we note that we have been unable to find specific examples in mathemati- 
cal physics which fall under cases (iii) and (iv) of the theorem. 

5. A Modified Transformation. By the analysis which leads to Theorem 1, one 
sees that the Pruifer transformation cannot be used when a C (0, 1) or a C (1, 2) 
and E > 0. One might hope that the alternative Priifer transformation 

(24) u(x) = r(x) cos i1(x) , p(x)u'(x) = r(x) sin i1(x) 

could be used to solve such singular problems. However, the use of (24) in the 
analysis of i1' yields (16) with -41' replacing 0'. Hence, no advantage is gained using 
this transformation. 

To compute the eigenvalues for such values of a, we define a new function 4 by 
the equation 

(25) = (0 - 0)n+ 

where 0o = 0(0) and n is a parameter to be determined. Equation (5) then yields 
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(26) 'I/ = (n + l)4)n'(n+')[(l/p) COs2 0 + (Xp - q) sin2 9] 

where 

(27) 0 = l(n+1) + 00 

We note that q5 will be a solution of (26) with 4(0) = 0. With this initial condition 
there is no unique solution of (26) since O = 0 together with the nonzero solution 
obtained from (1) satisfy this equation. We can find a unique nonzero solution by 
choosing 0'(0) to be the value obtained from the investigation of the asymptotic 
value of ?5'(x) as x -> 0. We proceed as follows. 

Again assuming there is a solution of the form u(x) = xgU(x), f3> 0, we see that 

0o=limtan-' u ,=0o < 
(28) x- p(x)u 

=-7r/2, a > 1. 

Also in the neighborhood of the origin, we have 

0(x) =tan -1 u U(x) + O[3-3a1 a <1, 

pu' xalP x)V '(x)V() W-i 
- -r/2 - U(x) + O[x3a31 a > 1, 

where p(x) = xaP(x) and V(x) = 1U(x) + xU'(x) as before. For a CE (O, 1). 

U O(x3 3) nx yaPRU2 + pV2X7ao 
(29) (i = (n + 1) X ,L_,~PV + 2-2au2 + P2V 

is finite and nonzero at x = 0 when n = a/(1 - a). 
It follows from (29) that, for this value of n, 

lim ?5'(x) = (n + 1)[fP(0) I' (R(0) + 032)/(p (0)f2) ly 0, 

(30) x--0 

= (n + 1) n[P (0)] , y > O 

For a C (1, 2), 

(31) (n + 1l) [-xa1PV + O(x 3a_3) ]n Xy+a-2PRU2 + Xa2pV2 
- u ~~~~U2 + X2a-2P2v2 

is finite and nonzero at x = 0 when n = (2 - a)/(a - 1). As above, it follows from 
(31) that, for this value of n, 

lim q5'(x) = (n + 1 ) ()n[p (0) ]n+[R (0) + ,32] , Y = 0, 

(32) x4o 

= (n + 1) (_)7+2[p (o) ]n1 > 

These results are summarized in the following: 
THEOREM 2. If there is a solution of (14) with a C (0, 1) or a C (1, 2) of the form 

u(x) = x#U(x), , > 0 and U(O) - 0, where P(x) > 0 and Q(x) = xYR(x), (R(O) # 0), 
then 0'(0) is finite, nonzero and is given by (30) for a E (0, 1) with n = a/(1 - a) and 
by (32) for a CE (1, 2) with n = (2 - a)/(a - 1). 0(x) may then be found from (26) 
and (27). 
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Theorem 2 may be used to compute the eigenvalues of such singular problems in 
the following way. We find +(x, X) by integrating (26) and subsequently O(x, X) from 
(27) for a choice of X. As before, with this function 0, we integrate (11) to get x(x, X) 
and use (9) to obtain successive approximations for the eigenvalue. 

As an example, we consider 

(33) (X"1/2u')' + Xu = 0, u(0) finite, u(1) =0. 

The parameters of this example are a = 1/2, 3 = 1/2, oy = 3/2. Thus n = 1 and 
q5'(0) = 4. The results of this computation are given in the following table. The first 
three eigenvalues are calculated using step sizes h = 1/128, 1/256, 1/512, together 
with the exact values [6]. 

TABLE III 

h Xi X2 X3 

1/128 4.73889 20.4710 47.3090 

1/256 4.73890 20.4714 47.3046 

1 /512 4.73903 20.4715 47.3047 

Exact Xi 4.73907 20.4716 47.3052 
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